产品FAQ

地址:海南省海口市
电话:0898-08980898
产品FAQ

当前位置: 首页 > 新闻资讯 > 产品FAQ

旅行者1号距离地球211亿公里,通信功率只有23瓦,数据是如何传到地球的?

2024-04-29 04:27:17

旅行者1号(英语:Voyager 1)是由美国宇航局研制的一艘无人外太阳系空间探测器。[1]重815千克,于1977年9月5日发射,截止2019年10月23日,旅行者1号距离地球211亿公里。

作为美国宇航局研制的一艘无人外太阳系空间探测器,旅行者1号(英文名:Voyager 1)重815千克,于1977年9月5日12:56:00 UTC 在美国东海岸的佛罗里达卡纳维拉尔角航天发射基地发射生空。

旅行者1号及其姊妹探测器旅行者2号均使用三块钚放射性同位素温差发电机作为动力来源,可提供功率420瓦。

目前旅行者1号距离地球大约217亿公里,相当于0.00229光年,通讯时差20.06小时,这意味着从旅行者1号发出的无线电信号需要耗费20.06小时才能到达地球,被地面的天线接受到。

因此,旅行者1号和地球之间传输数据还是存在着一定难度的,但也没有像人们想象中的那么复杂,并没有用到什么高科技,其使用的只是无线电通信技术,将需要传送的声音、图像、数据等调制成无线电信号,经空间传至地面。

旅行者1号拍摄的木卫一


无线电信号的强度会随着传输距离的增加不断衰减,当旅行者1号发射的信号传到地面时,功率衰减为起初的一百万亿亿分之一,仅有10ˇ-22瓦。

不仅传输功率的极低,传输速度也非常慢,只有约1.4kb/s 。


其由三处分别位于美国加州、西班牙马德里、澳大利亚堪培拉的呈120度分布的深空通信设施组成,以此实现与旅行者1号的信号传输,而且不受地球自转的影响。

同时采取以下三种措施增加信号传输的成功率:

⑴ 使用高增益天线,使无线电信号集中在某个方向上,增大传输距离

旅行者1号上的高增益天线直径达3.7米,原来DSN使用的天线直径达70米,由于已经使用超过40年,NASA从2010年开始部署34米天线,以替换陈旧的天线,满足信号接收需求。这些地面接收天线可将接收到的信号放大数亿倍。

⑵ 旅行者1号的通讯频率高达8GHz,在这个频段上,几乎没有任何干扰,信噪比非常高。

⑶ 旅行者1号安装有高精度的陀螺仪,确保其在深空也能时刻让天线对准地球的方向

虽然科学家们用尽浑身解数,但由于距离实在太远,加上太空中存在许多高能辐射,且无线电信号受自然因素影响,会对无线电信号产生干扰。

因此,为了提高信息传输的正确率,在将声音、图像等信息调制成无线电信号的过程中使用了大量纠错码,这也使得有效传输效率降低,只有不到1kb/s.

旅行者1号携带的发电机目前已经大大标出设计使用寿命,科学家预计,它们仍然可提供足够的电力让探测器上搭载的科学仪器继续工作到2025年,并继续与地球保持通信,直至2036年。

此后,旅行者1号将失去与地球之间的联系,带着人类的梦想,孤身飞往银河系中心,飞向更远的地方!

首先是旅行者自带3m增益锅

然后是地面30-70m的一堆深空网络锅

旅行者1号于1977年9月5日发射,截止到2019年11月距离太阳约147个AU,并以每年3.579 AU 的速度远离太阳系。(1AU,即1个天文单位,约为1.5亿千米。)。旅行者2号于1977年8月20日发射,截止到2019年11月距离太阳约122个AU,并以每年3.234 AU 的速度远离太阳系,已经飞出了太阳系边缘,正在奔向更见遥远的星际空间。在“旅行者1号”和“旅行者2号”探测器发射的1977年,地球、木星、土星、天王星和海王星排列成一线(每176年出现一次,一次为期3年),为这次“大巡游”提供了机会。 图1显示了“旅行者号”的早期任务阶段包括发射和地球到木星间的巡航以及行星任务(与木星、土星、天王星和海王星交会)阶段飞行路径。

图 1 “旅行者”的飞行路径

目前,2个“旅行者号”探测器正在执行一项长期(1977-2025)的探测任务。它们在探索了外行星木星、土星、天王星、海王星之后,“旅行者”探测器到达了太阳系的边缘并正在飞向其最终目的地星际空间,它们现正在从未到达过的空间中飞行,不断书写NASA最成功最富创造性的星际探测传奇,其所处位置如图2所示。

图2 旅行者1号和2号飞行方向示意图
图3 旅行者1号探测器

“旅行者号”目前的任务阶段是星际任务,开始于1990年1月。星际任务对满足最近NASA在“空间科学计划”之“2000年战略规划”中制订的目标非常关键。自从2000年战略规划以来,其中一个目的是“了解太阳变化及其对太阳系的影响。 “旅行者号”是唯一能够持续探测外日光层的探测器。 2000年战略规划的另一个目的是“了解星系、恒星和行星的形成、互动以及进化”, 并“利用太阳系外部空间环境作为自然科学实验室,并走出太阳系的范围去探索太阳系附近银河系环境”。“旅行者号”是唯一处在能够进行这些星际环境探测的飞行器。“旅行者号”的长寿命使它们成为研究太阳风长期变化的理想平台。它们与太阳的距离使它们成为研究太阳风、爆发和宇宙射线的理想探测器。由于能够将其数据与地球轨道航天器(IMP8,WIN,ACE,SAMPEX)以及穿越黄道南北远端的“尤利西斯”数据作对比,大大增强了“旅行者”数据的理解。

如图4所示,每个“旅行者号”探测器载有以下设备:

  • 等离子光谱仪(PLS)用来测量等离子区离子的速度、密度和压力;
  • 低能带电粒子(LECP)试验测量几十KeV到MeV范围内的电子、质子和重离子;
  • 宇宙射线系统(CRS)测量3~30MeV范围内宇宙射线的电子和原子核能量;
  • 三轴磁门磁力计(MAG)测量行星和星际磁场强度;
  • 等离子波系统(PWS)测量低射频电子密度分布图和等离子波—粒间相互作用;
  • 行星射电天文(PRA)实验研究来自木星和土星的无线电辐射信号;
  • 紫外线分光计(UVS)测量紫外线光谱中的大气特性;
  • 成像科学系统(ISS)包括一个窄角度、长焦距的相机和一个广角、短焦距相机;
  • 光偏振测量仪系统(PPS)采集排放强度数据,包括一个偏振器和一个滤波器,该滤波器用于220~730nm光谱范围内8个谱带中的1个;
  • 红外干涉分光计(IRIS)和辐射计测量行星、卫星和环局部和全局能量平衡以及垂直温度分布。
图4  “旅行者”探测器和其科学设备

注:HEF——高效率。

对 “旅行者号”的测控通信是由NASA深空网(DSN)负责,DSN由分布在全球按经度间隔接近120°分布的三处的深空站组成,分别位于美国加州的戈尔德斯通、西班牙的马德里和澳大利亚的堪培拉,深空网的操作控制中心位于美国加州帕萨迪纳的喷气推进实验室(JPL),如图5所示。NASA深空网是目前世界上能力最强、规模最大的深空测控通信系统,系统始建于1958年,1961年建成包括戈尔德斯通、澳大利亚伍墨拉和南非约翰内斯堡三个深空站的系统,1963年正式命名为深空网;之后在1965年新建了西班牙马德里和澳大利亚堪培拉两个深空站。直到1974年随着堪培拉和马德里站取代了伍墨拉和约翰内斯堡(NASA关闭了了两处设施),形成了目前的三站格局。

(1)戈尔德斯通深空站(北纬35°25′36″,西经116°53′24″),位于美国加州的莫哈维沙漠。目前在运行的有1个70m天线、3个34m波束波导(BWG)天线,正在新建1个34m BWG天线。

(2)马德里深空站(北纬40°25′53″,西经4°14′53″W),位于西班牙首都马德里以西60km。目前在运行的有1个70m天线,1个34m高效率天线,2个34m波束波导天线,另有2个34m波束波导天线在建。

(3)堪培拉深空站(南纬35°24′05″,东经148°58′54″),位于澳大利亚首都堪培拉西南40km。目前在运行的有1个70m天线,3个34m波束波导天线,有1个34m波束波导天线在建。

DSN所属的三个深空站全都能够跟踪“旅行者1号”。 而“旅行者2号” 由于位于黄道遥远的南方,北半球站点是看不到的,只能通过堪培拉深空站的通信链路。表1显示加利福尼亚戈尔德斯通深空站两种不同尺寸的天线对于“旅行者1号”遥测数据率的限制,以及澳大利亚堪培拉深空站对“旅行者2号”遥测数据率的限制。至于西班牙马德里的第三个深空站,对“旅行者1号” 遥测数据率的限制同戈尔德斯敦站的相似。

图5 美国NASA 深空网布局和组成

为了实现“旅行者号”任务极远距离的深空通信,当时的探测器和地面深空站都采用了很多通信新技术,并且在旅行者号任务实施的着四十多年的过程当中,地面也一直不断地通过采用新技术来提升远距离通信能力。

“旅行者号”通信的系统设计受 “水手-金星-水星” (1973 年发射)和“海盗轨道器”(1975 年发射) 通信系统影响很大。这两个以前的任务主要使用S频段上/下行链路系统,并进行了X频段试验。“旅行者号”任务设计的主要改进包括:

1)首次使用X频段而不是S频段作为主要的下行遥测链路;

2)采用双输出功率的X频段TWTA,最大发射功率18W,设计用来减小质量、使效率最大化,且工作时间超过50000h;

3)一个3.66m直径的天线,是1977年发射时的最大口径反射面天线;

4)用级联格雷+卷积编码的单通道遥测系统提供有效的数据传输,后来在轨升级为级联R-S+卷积编码。

在“旅行者号”任务的飞行过程中采用的新技术包括:

  • 图像压缩技术

在探测器同木星和土星交会之后,JPL完成了“旅行者号”的图像数据压缩(IDC)软件。项目组把软件加载到了探测器上的在轨备份数据子系统(FDS)计算机中,该计算机进行了重新配置,以执行这项任务。未压缩的“旅行者”图像包括800行,每行800个点(像素),每像素8bit(表示256级灰度中的一个)。然而,典型的行星或卫星图像中包含的大多数数据内容是黑色的太空或低对比度的云。通过计算相邻临像素灰度级别之间差别,而不是完整的8bit值,图像数据压缩能够将一幅典型图像的比特数减少60%而不会过度地丢失信息,这就减少了从天王星和海王星向地球传回一幅完整图像所需时间的60%。

  • 纠错编码

同其它深空链路一样,“旅行者号”的遥测链路受通信信道中噪声影响,改变了信道中所传输比特的量值,换句话说,产生了误码。纠错编码减少了接收输出的信息误码率。这种编码通过增加相关信息比特率增加了信号冗余。在木星和土星探测中使用的格雷编码算法要求每个发送的信息比特需要1bit的开销(开销为100%)。“旅行者”载有一个试验性的RS数据编码器,特别适用于天王星和海王星这种通信距离更远的任务阶段。新的RS编码方案减少到每5bit信息有1bit的开销(开销为20%),信息输出误码率由5×10-3减少到10-6。

  • DSN的 64m站升级到70m站

得益于“旅行者”计划最重要的DSN升级是64m站升级到70m站。70m站的升级通过移走旧金属面板和结构支架,然后安装全新的外部支撑结构和精密面板,面板表面可调整到亚毫米级精度。引入了全息对齐技术,用来保证准确的聚焦X频段射频信号。更大的表面面积和对齐及校正技术共同使每个70m站的信号强度提高了1.4dB。

  • DSN天线组阵

受益于“旅行者”计划第二项重要DSN升级是采用基带合成技术的多天线组阵系统。通过将70m天线同1个34m高效率(HEF)天线组阵,可使70m天线的性能增加0.8dB;将70m天线同2个34m天线组阵,可使70m天线的性能增加1.2dB。

  • DSN天线同非DSN天线组阵

为了与海王星交会时获取数据,“旅行者”计划调动了NASA/JPL管理的DSN以外的地面资源。同天王星交会时一样,DSN再次联手澳大利亚政府的Parkes 64m射电天文天线,该天线由联邦科学和工业研究机构(CSIRO)管理。DSN在堪培拉的70m和34m天线同Parkes 64m天线组成天线阵,其间用320km的微波链路相连[1]

与海王星交会期间,用上述3个天线同时跟踪“旅行者”,DSN和Parkes射电天文台取得的合成信号强度基本正比于增加的组阵天线组合表面积。其它因素相同的情况下,DSN-Parkes组阵可以提供的比特速率双倍于单一70m的能力。

到目前为止针对海王星的最大信号强度提升是通过将新墨西哥州socorro附近的国家射电天文台(NRAO)甚大天线阵(VLA)的27个25m抛物面天线同加利福尼亚州戈尔德斯敦的70m DSN天线组成天线阵得到的。用VLA与70m天线组阵后接收到的信号功率(或者数据率能力)接近70m天线自身接收能力的3倍。1个70m天线,2个34m天线与VLA组成天线阵,提供的下行信号性能比单一70m天线多5.6dB,在比特率上几乎是4倍。

最后,与日本航天局JAXA合作,允许其臼田的64m天线用于星际交会日的非实时射电科学数据组合。

  • Block V 接收机

在20世纪90年代初期,DSN开发了一种软件接收机(BVR)。好处之一是BVR为“旅行者”提供抑制载波模式下工作的能力。通过将探测器激励器的相位调制指数改变为90°,不存在独立载波,所有能量都分配给调制的遥测副载波。

  • 系统噪声温度的改善

在2000到2001年期间,DSN在70m站用HEMT技术代替了需频繁维护的脉泽前置放大器并降低了前置放大器噪声温度。这两项改造使下行遥测性能增加了约0.5dB。从二十世纪90年代后期开始探测器远离地球的速度相当于每年性能降低0.5dB。因此,这两项改造将比特速率能力(同没有改造相比)延长了1~2年。

  • 新建34-m天线和组阵全频谱合成

DSN已经完成了所有三个深空通信设施的组阵能力升级,包括从基带组合发展到全频谱合成以及装备了更多的34m天线。全频谱合成技术使得“旅行者号”在通过终点激波、日鞘和太阳风层顶进入到广阔未知的星际空间后,仍然能够使用科学数据回放速率下传数据。更多可用的34m站减少了各项目对紧缺DSN资源的争夺, 从2013年开始,“旅行者”的日常的组阵是利用一对34-m天线组阵以160bit/s的速率接收每天的巡航遥测数据。

综合采用以上各种提高系统性能的方法,使地面接收“旅行者号”下行数据的码速率目前仍可以达到约150bps。虽然,在这种下传数据速率的情况下,获取探测数据仍然很慢,而且天地单向光行时达到约20h,但地面仍可以通过获取的有限且宝贵的科学探测数据,认识遥远太空的奥秘。

第一天线增益,第二编码增益。后者少一些,不过总也能省个几倍的功率吧。

看了几个答案,对编码增益的介绍都比较表面。并不是因为用了编码所以传输速率会降低。一定发射功率,要达到一定可靠性,不用编码的话能达到的速率只会更低。所谓编码开销都是形式上的、非本质的。

1:首先23瓦的功率并不低,如果只是要求传输数据而对传输数据的速率(带宽)不做太高的要求的话,23瓦是能满足要求的。我们平时手机接收到的基站天线发射我过来的无线电信号功率大概-70dbm~-100dbm,dbm是分贝毫瓦,换算成瓦特为单位的话,为0.00000000001瓦特~0.0000000000001瓦特(别数了,小数点后面九个零到十二个零)。23瓦特的发射功率,按照距离衰减的公式,经过200多亿公里发送到地球的信号大概小数点后面二十多个零瓦特吧,当然很小对不对?不过不要紧,我们又不对旅行者一号的传输速率要求像4G、5G那么快。

2:其次,旅行者1号发射的信号进行了信道编码,以增强抗干扰能力和增强纠错能力。

3:高增益的天线进一步保障了旅行者一号发射无线信号的有效传输,最重要的是旅行者一号的天线方向始终以最佳的角度朝向地球,这样才能确保最佳的接收增益。

地址:海南省海口市 Copyright © 2012-2018 杏运-杏运工业电子元件服务商 非商用版本

ICP备案编号:琼ICP备xxxxxxxx号

平台注册入口